中文字幕欧美乱伦|手机AV永久免费|澳门堵场日韩精品|日本性爱欧美激情|蜜桃狠狠狠狠狠狠狠狠狠|成人免费视频 国|欧美国产麻豆婷婷|99久久久国产精品福利姬喷水|婷婷内射精品视频|日本欧洲一区二区

澎湃Logo
下載客戶端

登錄

  • +1

2040張圖片訓(xùn)練出的ViT,準(zhǔn)確率96.7%,連遷移性能都令人驚訝

2022-02-03 15:26
來源:澎湃新聞·澎湃號·湃客
字號

曉查 發(fā)自 凹非寺

量子位 | 公眾號 QbitAI

ViT在計算機視覺領(lǐng)域取得了巨大的成功,甚至大有取代CNN之勢。

但是相比CNN,訓(xùn)練ViT需要更多的數(shù)據(jù),通常要在大型數(shù)據(jù)集JFT-300M或至少在ImageNet上進(jìn)行預(yù)訓(xùn)練,很少有人研究少量數(shù)據(jù)訓(xùn)練ViT。

最近,南京大學(xué)吳建鑫團(tuán)隊提出了一種新方法,只需2040張圖片即可訓(xùn)練ViT。

他們在2040張花(flowers)的圖像上從頭開始訓(xùn)練,達(dá)到了96.7%的準(zhǔn)確率,表明用小數(shù)據(jù)訓(xùn)練ViT也是可行的。

另外在ViT主干下的 7 個小型數(shù)據(jù)集上從頭開始訓(xùn)練時,也獲得了SOTA的結(jié)果。

而且更重要的是,他們證明了,即使在小型數(shù)據(jù)集上進(jìn)行預(yù)訓(xùn)練,ViT也具有良好的遷移能力,甚至可以促進(jìn)對大規(guī)模數(shù)據(jù)集的訓(xùn)練。

論文內(nèi)容

在這篇論文中,作者提出了用于自我監(jiān)督 ViT訓(xùn)練的IDMM(Instance Discrimination with Multi-crop and CutMix)。

我們先來看一下ViT圖像分類網(wǎng)絡(luò)的基本架構(gòu):

將圖像樣本x?(i = 1, 2, …, N; N為圖片數(shù)量)送入ViT中,得到一組輸出表征z?。w?為第j個分類的權(quán)重。

然后,使用全連接層W進(jìn)行分類,當(dāng)類的數(shù)量等于訓(xùn)練圖像的總數(shù)N時,即參數(shù)化實例判別。

第j類的輸出為:

我們把O送入Softmax層,就得到一個概率分布P??。對于實例判別,損失函數(shù)為:

對于深度聚類,其損失函數(shù)為:

可以看出,只要適當(dāng)設(shè)置權(quán)重(讓w? = ~w? ),就可以讓實例判別等價于深度聚類。

從下圖中可以看出,與其他方法相比,實例判別可以學(xué)習(xí)到更多的分布式表征,并能更好地捕捉到類內(nèi)的相似性。

作者之所以選擇參數(shù)化的實例判別,還有一個重要的原因:簡單性和穩(wěn)定性。

不穩(wěn)定性是影響自監(jiān)督ViT訓(xùn)練的一個主要問題。實例判別(交叉熵)的形式更穩(wěn)定,更容易優(yōu)化。

接下來開始梯度分析,損失函數(shù)對權(quán)重求導(dǎo):

其中δ是指示函數(shù),當(dāng)k=i時值為1,否則為0。

需要注意的是,對于實例判別,類的數(shù)量N通常很大,而且存在對實例樣本訪問極稀少的問題。

對于稀少的實例k≠i,可以預(yù)計P???≈0,因此?L/?w?≈0,這意味著w?的更新頻率極低。

在小數(shù)據(jù)集問題上,作者使用CutMix和標(biāo)簽平滑,來緩解此問題。

CutMix:

標(biāo)簽平滑:

最后梯度變?yōu)椋?/p>

這樣通過直接修改單次標(biāo)簽,來更頻繁地更新權(quán)重矩陣,也是ViT監(jiān)督訓(xùn)練中常用的方法。

總之,作者使用了以下策略來加強小數(shù)據(jù)集上的實例判別。

小分辨率:預(yù)訓(xùn)練中的小分辨率對小數(shù)據(jù)集很有用。

多次裁剪:實例判別概括了對比損失,保證了在使用多種實例時獲取特征的對齊和統(tǒng)一性。

CutMix和標(biāo)簽平滑:有助于緩解使用實例判別時的過擬合和不經(jīng)常訪問的問題。

至于為什么需要直接在目標(biāo)數(shù)據(jù)集上從頭開始訓(xùn)練,作者給出了3點原因:

1、數(shù)據(jù)

目前的ViT模型通常在一個大規(guī)模的數(shù)據(jù)集上進(jìn)行預(yù)訓(xùn)練,然后在各種下游任務(wù)中進(jìn)行微調(diào)。由于缺乏典型的卷積歸納偏向,這些模型比普通的CNN更耗費數(shù)據(jù)。

因此從頭開始訓(xùn)練ViT,能夠用圖像總量有限的任務(wù)是至關(guān)重要的。

2、算力

大規(guī)模的數(shù)據(jù)集、大量的耗時和復(fù)雜的骨干網(wǎng)絡(luò)的,讓ViT訓(xùn)練的算力成本非常昂貴。這種現(xiàn)象使ViT成為少數(shù)機構(gòu)研究人員的特權(quán)。

3、靈活性

預(yù)訓(xùn)練后再進(jìn)行下游微調(diào)的模式有時會很麻煩。

例如,我們可能需要為同一任務(wù)訓(xùn)練10個不同的模型,并將它們部署在不同的硬件平臺上,但在一個大規(guī)模的數(shù)據(jù)集上預(yù)訓(xùn)練10個模型是不現(xiàn)實的。

在上圖中,很明顯與從頭開始訓(xùn)練相比,ImageNet預(yù)訓(xùn)練的模型需要更多的參數(shù)和計算成本。

在小數(shù)據(jù)集上進(jìn)行預(yù)訓(xùn)練時的遷移能力。每個單元格和列中精度最高的元素分別用下劃線和粗體表示

最后,在下表中,作者評估了在不同數(shù)據(jù)集上預(yù)訓(xùn)練模型的遷移精度。

對角線上的單元(灰色)是在同一數(shù)據(jù)集上進(jìn)行預(yù)訓(xùn)練和微調(diào)。對角線外的單元格評估了這些小數(shù)據(jù)集的遷移性能。

從這張表中,我們可以看到以下幾點:

即使在小數(shù)據(jù)集上進(jìn)行預(yù)訓(xùn)練,ViT也有良好的遷移能力。

與SimCLR和SupCon相比,該方法在所有這些數(shù)據(jù)集上也有更高的遷移精度。

即使預(yù)訓(xùn)練的數(shù)據(jù)集和目標(biāo)數(shù)據(jù)集不在同一領(lǐng)域,也能獲得令人驚訝的好結(jié)果。例如,在Indoor67上預(yù)訓(xùn)練的模型在轉(zhuǎn)移到Aircraft上時獲得了最高的準(zhǔn)確性。

作者簡介

本文第一作者是南京大學(xué)在讀博士曹云浩,通訊作者是南京大學(xué)人工智能學(xué)院吳建鑫教授。

吳建鑫本科和碩士畢業(yè)于南京大學(xué)計算機專業(yè),博士畢業(yè)于佐治亞理工。2013年,他加入南京大學(xué)科學(xué)與技術(shù)系,任教授、博士生導(dǎo)師,曾擔(dān)任ICCV 2015領(lǐng)域主席、CVPR 2017領(lǐng)域主席,現(xiàn)為Pattern Recognition期刊編委。

參考鏈接:

[1]https://arxiv.org/abs/2201.10728

[2]https://cs.nju.edu.cn/wujx/index.htm

— 完 —

原標(biāo)題:《2040張圖片訓(xùn)練出的ViT,準(zhǔn)確率96.7%,連遷移性能都令人驚訝 | 南京大學(xué)》

閱讀原文

    本文為澎湃號作者或機構(gòu)在澎湃新聞上傳并發(fā)布,僅代表該作者或機構(gòu)觀點,不代表澎湃新聞的觀點或立場,澎湃新聞僅提供信息發(fā)布平臺。申請澎湃號請用電腦訪問http://renzheng.thepaper.cn。

    +1
    收藏
    我要舉報
            查看更多

            掃碼下載澎湃新聞客戶端

            滬ICP備14003370號

            滬公網(wǎng)安備31010602000299號

            互聯(lián)網(wǎng)新聞信息服務(wù)許可證:31120170006

            增值電信業(yè)務(wù)經(jīng)營許可證:滬B2-2017116

            ? 2014-2025 上海東方報業(yè)有限公司

            反饋